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Abstract

We study the problem of learning to choose from
m discrete treatment options (e.g., news item or
medical drug) the one with best causal effect for
a particular instance (e.g., user or patient) where
the training data consists of passive observations
of covariates, treatment, and the outcome of the
treatment. The standard approach to this prob-
lem is regress and compare: split the training data
by treatment, fit a regression model in each split,
and, for a new instance, predict all m outcomes
and pick the best. By reformulating the problem
as a single learning task rather than m separate
ones, we propose a new approach based on re-
cursively partitioning the data into regimes where
different treatments are optimal. We extend this
approach to an optimal partitioning approach that
finds a globally optimal partition, achieving a
compact, interpretable, and impactful personal-
ization model. We develop new tools for validat-
ing and evaluating personalization models on ob-
servational data and use these to demonstrate the
power of our novel approaches in a personalized
medicine and a job training application.

1. Introduction

Personalization is the problem of determining the best
treatment option for a given instance. A treatment can, for
example, be a movie recommendation (Zhou et al., 2008),
a display ad (Goldfarb & Tucker, 2011), or a pharmacolog-
ical therapy (Lesko, 2007), and an instance is usually an
individual person. In this paper, we study the problem of
learning how to personalize from observational data, which
is an important problem in emergent contexts such as per-
sonalized medicine. In this and related contexts, experi-
mentation can be prohibitively small-scale, costly, danger-
ous, and unethical in comparison to passive data collection,
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which can be potentially massive as in electronic medi-
cal records (EMRs) but, at the same time, lack experimen-
tal manipulation so that isolated causal effects of specific
treatments are hidden by confounding factors. We show
that standard approaches that pose the problem as multiple
supervised learning tasks fall short in this setting and pro-
pose new learning algorithms as well as evaluation methods
used for validation, selection, and tuning.

Specifically, we consider the problem of learning how to
assign the best of m treatments to an instance, given an
observation of associated baseline covariates x ∈ R

d. An
instance is characterized by the random variables X ∈ R

d

and Y (1), . . . , Y (m) ∈ R, which denote the covariates and
the m potential outcomes of applying each of the treat-
ments (Imbens & Rubin, 2015, Chs. 1-2). We use the
convention that smaller outcome is better. A personal-
ization model is a map τ : R

d → [m] = {1, . . . ,m}
that, given an observation of covariates x, prescribes a
treatment τ(x). Its (out-of-sample) personalization risk
is its average causal effect in the population R(τ) =
E [Y (τ(X))] (the expectation is taken with respect to the
joint distribution of X,Y (1), . . . , Y (m)). The Bayes op-
timal risk is R∗ = R(τ∗), where τ∗(x) ∈ T ∗(x) =
argmint∈[m] E [Y (t) | X = x] is the Bayes optimal per-
sonalization model.

The learning task is to train a personalization model τ̂n(·)
on n data points: Sn = {(X1, T1, Y1), . . . , (Xn, Tn, Yn)} ,
where the observed outcome Yi = Yi(Ti) corresponds only
to the treatment Ti administered. This data is observa-
tional: we may not control the historic administration of
treatment (as we would in a controlled experiment) and
the values Yi(t) for t �= Ti are missing data. We assume
the data is independent and identically distributed (iid) and
let X,T, Y, Y (1), . . . , Y (m) represent a generic draw. Al-
though the data is iid, the t-treated sample {i : Ti = t} dif-
fers systematically from the sample t′-treated {i : Ti = t′}
for t �= t′, i.e., not just by chance as in a randomized con-
trolled trial (RCT). Our second assumption about the data
is unconfoundedness:

Assumption 1. For each t ∈ [m]: Y (t) is independent of
T given X and T = t is possible for almost every X , i.e.,
Y (t) ⊥⊥ T | X and P (P (T = t | X) > 0) = 1.

The assumption is standard in causal effect estimation
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(see e.g. Kallus, 2016; 2017b) for ensuring identifiability
(Rosenbaum & Rubin, 1983). It says that we measured the
right covariates to separate the effect of the treatment itself
from the effect of assignment. In the context of person-
alized medicine, this assumption would be justified if the
EMR contained all the patient information used by a doctor
to prescribe treatment up to the vagaries and idiosyncrasies
of individual doctors or hospitals. Under Asn. 1, the condi-
tional causal effect is equal to regressing Y on X,T :

E [Y (t) | X = x] = E [Y (t) | X = x, T = t]

= E [Y | X = x, T = t] .

1.1. Standard Approach: Regress and Compare

Since under Asn. 1 the optimal model τ∗ chooses a treat-
ment by minimizing among m regression functions, one
obvious approach to personalization is to estimate these
regression functions, fitting each to the subset of the data
that received each treatment, and then use these to pre-
dict outcomes and pick the smallest prediction. For ex-
ample, in medicine, there is a vast literature on predict-
ing patient-specific responses to treatment (Feldstein et al.,
1978; Stoehlmacher et al., 2004) and picking the best by
comparing (Qian & Murphy, 2011; Bertsimas et al., 2017).

The same approach is also generally taken in the contex-
tual multi-arm bandit problem (Li et al., 2010), which is
similar to our problem with the differences that we con-
sider an offline learning problem and that bandit arm pulls
are controlled interventions (a bandit problem is essentially
a dynamic RCT) so the treated subpopulations are always
statistically equivalent. The standard solution is to fit m re-
gression functions, and, for a new instance, predict m out-
comes and pick the smallest prediction subject to cleverly
ensuring sufficient exploration by, e.g., adding confidence
bounds that vanish with n. The regression, assumed linear,
is done using ridge regression as in Li et al. (2010) (Lin-
UCB), ordinary least squares (OLS) as in Goldenshluger &
Zeevi (2013), or LASSO as in Bastani & Bayati (2016).

The regress and compare (R&C) approach to personaliza-
tion from observational data can be summarized as:

1. For each t ∈ [m]:
(a) Consider the t-treated subsample St,nt

= {(Xi, Yi) :
i ∈ [n], Ti = t} of size nt =

∑n
i=1 I [Ti = t].

(b) Fit a regression model μ̂t,nt
(x) of the response Y to

regressors X using training data St,nt , e.g., by OLS.1

1Note that separate OLS on each subsample St,nt is equiva-
lent to OLS on the whole sample if we include interaction terms
with dummy variables I [Ti = t]. At the same time, OLS on the
whole sample without interaction terms provides no personaliza-
tion, i.e., τ̂R&C

n (x) is constant. Similarly, separate nonparametric
regressions on each subsample is equivalent to using the whole
sample and endowing the T variable with a discrete topology.

2. Personalize by choosing the best predicted outcome:
τ̂R&C
n (x) = argmint∈[m] μ̂t,nt(x).

Under Asn. 1, if our regression estimator is consistent then
so is R&C personalization consistent as shown below. All
proofs are given in the supplementary materials.

Theorem 1. If Asn. 1 holds and μ̂t,nt
(x) are pointwise

consistent regressions, i.e., μ̂t,nt
(X) → E [Y | X,T = t]

almost surely (a.s.) ∀t ∈ [m], then τ̂R&C
n (X) ∈ T ∗(X)

eventually a.s.

Examples of pointwise consistent regression estimators are
k-nearest neighbors (kNN) and kernel regression (Walk,
2010). If a linear model is well-specified, then OLS is
also pointwise consistent. In practice, however, R&C is
not effective for personalization because it attempts to learn
much more than it needs to, it splits the training data into
m, and in training it addresses estimation or prediction risk
rather than personalization risk.

1.2. Other Related Problems and Approaches

In learning heterogeneous causal effects, one is concerned
with the case of observational data with two treatments, t =
1 (“Control”) and t = 2 (“Treatment”), and the estimation
of the relative conditional average treatment effect (CATE),
δ(x) = E [Y (2)− Y (1) | X = x]. Under Asn. 1, CATE is
the difference between two regression functions: δ(x) =
E [Y | X = x, T = 2]−E [Y | X = x, T = 1]. And so one
way to estimate it is by regressing outcome in each treat-
ment population and taking differences. When the condi-
tioning variables in CATE are a proper subset of the co-
variates needed to satisfy Asn. 1, Abrevaya et al. (2015)
propose estimates based on propensity-score weighting and
kernel regression. Athey & Imbens (2016) develop the
Causal Tree (CT), which uses recursive partitioning, as an
alternative to differencing two CART regressions.

For personalization, learning heterogeneous effects can be
used to choose between two treatments by comparing an
estimate of their relative CATE to zero. As a learning prob-
lem, however, this addresses estimation risk rather than per-
sonalization risk and deals only with two treatments. In
Sec. 2.6 we propose one-vs-one and one-vs-all strategies
for personalization using CATE estimates and show it is
consistent. We compare to this strategy using CT in our
empirical investigation.

In learning from logged bandit feedback (Beygelzimer
& Langford, 2009; Swaminathan & Joachims, 2015a;b;
Kallus, 2017a), one is concerned with learning a good pol-
icy for a contextual multi-arm bandit problem based on
logged data from another, known policy, rather than on-
line interactions. This problem differs in that it assumes
the data is experimental and the policy that generated the
data is known and available. In Sec. 2.6, we discuss adapt-
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ing these methods using imputed estimated propensities, to
which we compare in our empirical investigation.

2. Recursive Partitioning for Personalization

In this section we present three new algorithms that tackle
personalization directly as a single learning task.

2.1. Recasting the Problem

We begin by reformulating personalization risk. Follow-
ing Hirano & Imbens (2004, Def. 2.1), we define the gen-
eralized propensity score (GPS) as Q = φ(T,X), where
φ(t, x) = P (T = t | X = x). The GPS of subject i, Qi, is
an unknown quantity given by taking the unknown φ(t, x)
and plugging in the known variables Ti, Xi. Using the GPS
we can relate the personalization risk of a personalization
model τ to its accuracy as a classification model for labels
T , weighted by outcome and GPS.

Theorem 2. Under Asn. 1,

R(τ) = E [I [T = τ(X)]Y/Q] . (1)

For m = 2 and randomized data (φ(1, x) = π constant),
Zhao et al. (2012) is a special case of Thm. 2. Thm. 2
suggests using a weighted form of empirical classification
risk minimization. When Q is fully known as in the logged
bandit setting, this approach is closely related to the ap-
proach taken by Beygelzimer & Langford (2009); Swami-
nathan & Joachims (2015a;b). In the observational setting,
we explore estimating and imputing Q to use this approach
in Sec. 2.6. However, because estimating the GPS gener-
ally either relies heavily on model specification or, in non-
parametric settings, can be biased and variable, this will
lead to severe instability and limited practical use. More-
over, it does not address the personalization problem as a
single learning task, rather as two: learning a propensity
model task and then a weighted classification task. Instead,
in the following sections we present a single-task approach
that does not rely on estimating propensities separately.

2.2. An Impurity Measure for Personalization

Classification and regression trees (CART) are predic-
tive models based on recursive partitioning: the covariate
space is recursively partitioned by axis-aligned hyperplanes
(x� ≤ θ for � ∈ [d] and θ ∈ R) in order to minimize a
within-partition impurity measure (Breiman et al., 1984).
Impurities for classification include entropy and Gini and
for regression include sum of squared errors. Athey &
Imbens (2016) develop impurities for estimating heteroge-
neous effects. Motivated by Thm. 2, we develop an impu-
rity for personalization leading to a recursive partitioning
algorithm called personalization tree (PT).

Figure 1. Personalization Tree for Warfarin Dosing (Sec. 4.1):
from each node, the first arrow clockwise starting from noon cor-
responds to “No” and the other to “Yes.”

Note that for a subset X ⊆ R
d such that X ⊥⊥ T | X ∈ X ,

we have that φ(t, x) = P (T = t | X ∈ X ) whenever x ∈
X . To develop the personalization impurity, we use this to
establish the following as a corollary of Thm. 2:

Corollary 3. Consider a fixed partition of the covariate
space: Rd = X1 ∪ · · · ∪XL where X� ∩X�′ = ∅ whenever
� �= �′. Suppose that the partition is sufficiently fine so that

X ⊥⊥ T | X ∈ X� ∀� = 1, . . . , L. (2)

Then, R̂n(τ) =
∑L

�=1 R̂n,X�
(τ) is an unbiased and con-

sistent estimator for R(τ), where

R̂n,X (τ) =
∑n

i=1 I[Xi∈X ]

n

∑n
i=1

I[Xi∈X ,Ti=τ(Xi)]Y∑n
i′=1

I[Xi′∈X ,Ti′=τ(Xi)]
.

Note that the conditional independence in the condition (2),
which requires that leaf membership be a balancing score
as defined by Rosenbaum & Rubin (1983), holds trivially
when we condition on X itself. Therefore, the finer the
partition X1, . . . ,XL, the more accurate this assumption.
(while possibly not truly satisfiable by any finite partition).
Given a partition, we can use this risk estimate to optimize
τ . Letting S̃� = {(Xi, Ti, Yi) : Xi ∈ X�}, we can rewrite

minτ :Rd→[m] n
∑L

�=1 R̂n,X�
(τ) =

∑L
�=1 Ipers(S̃�),

where Ipers is the personalization impurity given by

Ipers({(Xi1 , Ti1 , Yi1), . . . , (Xik , Tik , Yik)})

= mint∈[m]
k(

∑k
j=1 I[Tij

=t]Yij )∑k
j=1 I[Tij

=t]
,

Therefore, to achieve good personalization risk we may
wish to seek partitions that have minimal sum of within-
partition personalization impurities as defined by Ipers.

2.3. Personalization Tree

The PT algorithm attempts to find a fine partition of the
data to minimize the sum of within-partition personaliza-
tion impurities. It does so by partitioning the dataset along
axis-aligned cuts, at each stage choosing to cut a partition
into the two partitions with least sum of impurities and pro-
ceeding recursively. In an attempt to find a fine partition
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that satisfies condition (2), PT continues to recurse until
a specified stopping criterion. One criterion is that there
be at least nmin-leaf ≥ 1 subjects of each treatment in the
partition.2 Another criterion may be a maximum recursion
depth Δmax, but this criterion is not necessary. We also al-
low for a limited number #features of features to be sampled
as candidate cut dimensions. We summarize the PT recur-
sive subroutine as Alg. 1. The PT algorithm is given by
passing the whole dataset Sn and initial depth Δ = 0 to
Alg. 1. The PT algorithm is notable for producing an inter-
pretable decision tree for the personalization rule (Fig. 1).

2.4. Personalization Forest

The finer the partition produced by PT, the closer we are
to condition (2) and the less bias the estimate of risk has.
The coarser the partition, the less variance the estimate has.
Therefore, there is an inherent trade-off to the fineness pa-
rameters in PT. To address this we can bag (bootstrap ag-
gregate) many very fine PTs, which will have the effect of
reducing variance without incurring too much bias as in the
case of random forests (Breiman, 2001). The correspond-
ing personalization forest (PF) algorithm is summarized in
Alg. 2. Generally, we set #features to

√
d to achieve suffi-

cient independence between trees for variance reduction.

2.5. Optimal Personalization Tree

PT is a greedy algorithm for minimizing personalization
impurity. In this section we propose the optimal personal-
ization tree (OPT) algorithm, which solves the global prob-
lem of finding partitions that minimize the sum of within-
partition personalization impurities:

min
X1∪···∪XL=Rd:(∗)

L∑
�=1

Ipers({(Xi, Ti, Yi) : Xi ∈ X�}), (3)

where (∗) is the restriction that X1, . . . ,XL be disjoint re-
gions defined by the leaves of a binary decision tree. In
the case of classification and regression, Bennett & Blue
(1996); Bertsimas & Dunn (2016) attempt to find glob-
ally optimal prediction trees (while the problem is NP-hard;
see Hyafil & Rivest, 1976). For our personalization prob-
lem, motivated by Bertsimas & Dunn (2016), we propose a
mixed-integer programming (MIP) approach to the optimal
personalization tree problem (3).

We consider a fixed binary tree structure on nodes 1, . . . , P .
Let Ap ⊂ [P ] be the unique path from the root to node
p, i.e., its ancestors. For q ∈ Ap, let Rpq = 1 if the
right branch is taken to reach p from q, otherwise −1.
Let L = {p ∈ [P ] : p /∈ A(q) ∀q ∈ [P ]} be the set of

2Note that Ipers(X ) is only defined when there is at least 1
subject for each treatment in the partition X . An alternative ap-
propriate for scarce data and large m allows for any number of
subjects but chooses the best treatment only from among those
with at least nmin-leaf subjects in the partition.

Algorithm 1 PT subroutine
input: Data part S̃ =

{
(Xi1

, Ti1
, Yi1

), . . . , (Xik
, Tik

, Yik
)
}

, cur-
rent depth Δ, tuning parameters nmin-leaf,Δmax,#features.

1: for � ∈ [d] do sort the data along x�: Xiπ(�,1),�
≤ · · · ≤ Xiπ(�,k),�

.

2: Set τ̂S̃(x) = argmint∈[m]

∑k
j=1 I[Tij

= t]Yij
/
∑k

j=1 I[Tij
= t].

3: if Δ < Δmax and mint∈[m]

∑k
j=1 I[Tij

= t] > nmin-leaf then

4: Set I� = ∞, �� = 0, j� = 0.
5: Draw �1, . . . , �#features at random from [d] without replacement.
6: for � = �1, . . . , �#features do

7: Set kL
1 = · · · = kL

m = 0, SL
1 = · · · = SL

m = 0, kL = 0.
8: Set kR

t =
∑k

j=1 I[Tij
= t], SR

t =
∑k

j=1 I[Tij
= t]Yij

, kR = k.
9: for j ∈ [k − 1] do

10: Update kL+=1, kR−=1, t = Tiπ(�,j)
, kL

t+=1, kR
t−=1,

11: SL
t+=Yiπ(�,j)

, SR
t−=Yiπ(�,j)

.

12: Set I = kL mint∈[m] S
L
t/k

L
t + kR mint∈[m] S

R
t /k

R
t ,

13: kmin = mint∈[m] min(kL
t , k

R
t ).

14: if I < I� and kmin ≥ nmin-leaf then set I� = I , �� = �, j� = j.
15: end for

16: end for

17: if I� < ∞ then

18: Set S̃L = {(Xiπ(��,j)
, Tiπ(��,j)

, Yiπ(��,j)
) : 1 ≤ j ≤ j�},

19: S̃R = {(Xiπ(��,j)
, Tiπ(��,j)

, Yiπ(��,j)
) : j�+1 ≤ j ≤ k},

20: τ̂S̃L = Alg. 1(S̃L, Δ + 1), τ̂S̃R = Alg. 1(S̃R, Δ + 1),
21: θ� = 1

2 (Xiπ(��,j),�
+ Xiπ(��,j+1),�

),

22: τ̂S̃(x) = (if x�� ≤ θ� then τ̂S̃L (x) else τ̂S̃R (x)).
23: end if

24: end if

output: τ̂S̃(x).

leaf nodes and let LC = [P ]\L be the non-leaf nodes.
Let Cp ⊂ [d] × R be the finite set of potential cuts at
each non-leaf node p ∈ LC , where (�, θ) ∈ Cp de-
notes that the cut x� ≤ θ is to be considered at node
p. (Usually we take θ to be the data midpoints along
dimension �.) Let Y i = Yi − minj∈[n] Yj , Y max =

maxi Y i, and M = Y max(maxt∈[m]

∑n
i=1 I [Ti = t] −

|L|nmin-leaf). For a vector γ with index set C ⊂ [d] × R,
let χi(γ, C) =

∑
(�,θ)∈C I [Xi,� ≤ θ] γ�,θ. For p ∈ LC ,

let kp = �log2 |Cp|� and Zp ∈ {0, 1}kp×|Cp| be such that
(Zp)ij = 1 if �j/2i� is odd and otherwise 0. Our MIP
formulation of the OPT problem (3) follows:

minimize
∑n

i=1

∑
p∈L νip subject to (4a)

w ∈ [0, 1][n]×L, λ ∈ {0, 1}L×m, μ ∈ R
L
+, ν ∈ R

[n]×L
+ (4b)

γp ∈ [0, 1]Cp , δp ∈ {0, 1}kp , Zpγp = δp ∀p ∈ LC (4c)

wip ≤ 1+Rpq

2
−Rpqχi(γq, Cq) ∀i ∈ [n], p ∈ L, q ∈ Ap (4d)

wip ≥ 1 +
∑

q∈Ap
(
1−Rpq

2
−Rpqχi(γq, Cq)) (4e)

∀i ∈ [n], p ∈ L∑
i:Ti=t wip ≥ nmin-leaf ∀t ∈ [m] (4f)

νip ≤ Y maxwip, νip ≤ μp ∀i ∈ [n], p ∈ L (4g)
νip ≥ μp − Y max(1− wip) ∀i ∈ [n], p ∈ L (4h)∑

t∈[m] λpt = 1 ∀p ∈ L (4i)
∑

i:Ti=t

(νip − wipY i) ≤ M(1− λpt) ∀p ∈ L, t ∈ [m] (4j)
∑

i:Ti=t

(νip − wipY i) ≥ M(λpt − 1) ∀p ∈ L, t ∈ [m] (4k)

Problem (4) is a MIP with |L|m +
∑

p∈LC log2 |Cp| bi-
nary variables. The variables γp encode choice of cut at
each node p and constraint (4c) ensures only one is cho-



Recursive Partitioning for Personalization using Observational Data

Algorithm 2 PF
input: Data Sn = {(X1, T1, Y1), . . . , (Xn, Tn, Yn)}, tuning parame-

ters T, nmin-leaf, Δmax, #features.
1: for j ∈ [T ] do

2: Draw S(j)
n =

{
(Xi1

, Ti1
, Yi1

), . . . , (Xin , Tin , Yin )
}

at random
from Sn with replacement.

3: Set τ̂ (j)
n = Alg. 1(S(j)

n , 0, nmin-leaf, Δmax, #features).
4: end for

output: τ̂n(x) = mode{τ̂ (1)
n (x), . . . , τ̂ (T )

n (x)}.

sen (see Yıldız & Vielma, 2013). The variable wip encodes
membership of datapoint i to leaf p and constraints (4d-
4e) enforce that wip is the product of indicators of whether
Xi goes in the left or right branch of the ancestor nodes.
Since these constraints are integral (Ahuja et al., 1993) we
need not enfoce wip be binary. Constraint (4f) ensures at
least nmin-leaf samples per leaf. The variable μp encodes the
mean outcome of the prescribed treatment in leaf p and the
variable νip encodes its product with wip, as ensured by
constraints (4g-4h). The variable λpt encodes the choice of
treatment t in leaf p and constraint (4i) ensures only one is
chosen. Constraints (4j-4k) ensure the consistency between
the choice of treatment λpt and the mean outcome μp. We
summarize the OPT algorithm for a complete binary tree in
Alg. 3. We use Gurobi to solve MIP (4) and use PT as a
heuristic warm start, randomly splitting leaf nodes at depth
less than Δ.

2.6. Adapting Existing Methods to Personalization

Using Observational Data

As discussed earlier, methods that estimate CATE, no-
tably CT (Athey & Imbens, 2016), can be used to
choose between two treatments by comparing δ(x) =
E [Y | X = x, T = 2] − E [Y | X = x, T = 1] to zero.
However, such methods are directed at estimation rather
than personalization and only address two treatments. To
address the latter, we propose one-vs-all (1vA) and one-vs-
one (1v1) strategies for personalization.

For 1vA, for each t ∈ [m] we learn an estimate δ̂tvA
n (x) of

δtvA(x) = E [Y | X = x, T = t] − E [Y | X = x, T �= t]
by applying a base algorithm (e.g., CT) to the modified
dataset StvA

n = {(Xi, 1 + I [Ti = t] , Yi) : i ∈ [n]}; then
we assign the treatment that does the best compared to the
rest: τ̂ 1vA

n (x) ∈ argmint∈[m] δ̂
tvA(x).

For 1v1, for each t �= s we learn an estimate
δ̂tvsnt+ns

(x) of δtvs(x) = E [Y | X = x, T = t] −
E [Y | X = x, T = s] on the modified data subset
Stvs
nt+ns

= {(Xi, 1 + I [Ti = t] , Yi) : Ti ∈ {t, s}}; then we
either assign the treatment that does the best compared to
the worst, τ̂ 1v1-A

n (x) ∈ argmint∈[m] mins∈[m] δ̂
tvs
nt+ns

(x),
or the one that gets the most votes in one-to-one compar-
isons, τ̂ 1v1-B

n (x) ∈ argmaxt∈[m]

∑
s 
=t I

[
δ̂tvsnt+ns

(x) < 0
]
.

Algorithm 3 OPT (complete binary tree)
input: Data Sn = {(X1, T1, Y1), . . . , (Xn, Tn, Yn)}, tuning parame-

ters nmin-leaf, Δ, #features, #cuts.
1: Set P = 2Δ, LC = [2Δ−1], Ap =

{�p/2j� : j ∈ [Δ]
}

,

2: Rpq = (−1)1+�p/2Δ−�log2(q)��.
3: for � ∈ [d] do sort the data along x�: Xiπ(�,1),�

≤ · · · ≤ Xiπ(�,k),�
.

4: for p = 1, . . . , 2Δ−1 do

5: Draw Fp ⊂ [d] with |Fp|=#features. Set J ={1, � n−1
#cuts

�, . . . , n−1}.

6: Set Cp = {(�,
Xiπ(�,j),�

+Xiπ(�,j+1,�)
2 ) : � ∈ Fp, j ∈ J}.

7: end for

8: Find γ, λ that solve problem (4).
output: Personalization model τ̂n(x) that proceeds as follows:
Set p = 1. for j ∈ [Δ] do set (�, θ) = inf{c ∈ Cp : γp,c = 1},
p = 2p + I [x� > θ]. return inf{t ∈ [m] : λpt = 1}.

We can prove that each of our 1vA and 1v1 proposals are
consistent given pointwise consistent estimates of CATE:

Theorem 4. Let Asn. 1 hold. Then:

1. If δ̂tvA
n (X) → δtvA(X) a.s. ∀t ∈ [m], then

τ̂ 1vA
n (X) ∈ T ∗(X) eventually a.s.

2. If δ̂tvsnt+ns
(X) → δtvs(X) a.s. ∀t �= s, then

τ̂ 1v1-A
n (X), τ̂ 1v1-B

n (X) ∈ T ∗(X) eventually a.s.

Note that 1vA and 1v1 with CT do not inherit trees’ inter-
pretability because the partitions of the 1vX models may
not overlap.

POEM and NPOEM (Swaminathan & Joachims, 2015a;b)
solve the problem of learning from logged bandit feedback,
assuming access to the logging policy that generated the
data. To adapt these to personalizing from observational
data, we propose to impute the logging policy using esti-
mated GPS, i.e., pretend the data were generated by the
policy that assigns t when context is x with probability
φ̂n(t, x) where φ̂n is a probabilistic classification model fit-
ted to the data {(Xi, Ti) : i ∈ [n]}. We call these IPOEM
and INPOEM.

3. Submatching for Validating

Personalization using Observational Data

In this section we discuss how one can evaluate and validate
personalization policies, such as the ones from the last sec-
tion. Usually, a new policy would be evaluated using a ran-
domized controlled trial, but these can be infeasibly costly.
We consider how to evaluate a personalization policy using
observational data. Such a dataset can be a subset removed
from the training data either for the purpose of testing or for
tuning and selection by (cross-)validation. The difficulty in
using observational data is that if a policy prescribes any
treatment τ(Xi) �= Ti, then it is not immediately clear how
to score this.

For offline evaluation of contextual bandits with experi-
mental data, Li et al. (2011) show that rejection sampling
is sufficient. A similar solution to evaluation with obser-
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vational data is a combined rejection and importance sam-
pling approach suggested by Thm. 2. If we had the GPS
Qi, we could omit any datapoint where τ(Xi) �= Ti while
giving score Yi/Qi to each datapoint where the prescrip-
tion matched the data, τ(Xi) = Ti. Per Thm. 2 and the law
of large numbers, this will provide a consistent estimate
for out-of-sample personalization risk. However, not only
does this throw away many datapoints, but to implement
this in practice we would have to estimate the GPS from
data. Estimating the GPS generally either relies heavily on
model specification or, in non-parametric settings, can be
biased and variable. This may be acceptable for training
purposes, as in imputing GPS in IPOEM and INPOEM, as
it is already a black box. However, for evaluation, a more
reliable estimate of risk is desirable for evidence of success.

We propose the use of submatching for evaluation. Match-
ing is a common tool for causal inference (Rosenbaum,
1989; Abadie & Imbens, 2006) where every subject is
matched to a subject that received the opposite treatment,
creating a complete matched dataset. In submatching, we
instead seek only a subset of the data that is well-matched.
In this subset, each subject is matched based on a metric
‖x− x′‖ to m− 1 subjects that received each of the treat-
ments the subject did not. Their outcome is imputed as
the counterfactual outcome of those treatments for the sub-
ject. All matched subjects are not used for training in order
to avoid in-sample bias. Usually, Mahalanobis distance is
used: ((x− x′)Σ̂−1(x− x′))1/2 where Σ̂ is the sample co-
variance. (Note that due to personalization on X , matching
on propensity scores alone would be insufficient.)

3.1. Greedy Submatching

The simplest way to extract a matched subset of size ntest
from Sn is to do so greedily: draw random i1, . . . , intest

from [n] without replacement, for each j ∈ [ntest] and t ∈
[m], if t = Tij then set Ŷijt = Yij and if t �= Tij then find
i ∈ argmini∈[n]:Ti=t ‖Xi −Xij‖ (with replacement), let
Ŷijt = Yi and flag subject i, and finally remove all drawn
and flagged subjects from training data. The imputed value
for the unknown Yij (t) is Ŷijt and our estimate for per-
sonalization risk of τ(x) is R̂(τ) = 1

ntest

∑ntest
j=1 Ŷijτ(Xij

).
When matching is exact, i.e. Xi = Xij for all matches,
this estimate is unbiased.

Theorem 5. Under Asn. 1 and exact matching,
E[R̂(τ)]=R(τ).

3.2. Optimal Submatching

The greedy method for constructing a matched dataset is
simple but it can be wasteful, limiting the amount of the
data available for training. We may be able to do better
for testing and evaluation when m = 2, when the problem

reduces to average treatment effect estimation. Consider
the problem of finding the subset of the data with the clos-
est matches. That is, finding i11, i12, . . . , inpair1, inpair2 with
Tijt = t and minimal

∑npair
j=1 ‖Xij1 −Xij2‖, and using the

pairs for imputations.3 This problem can be reduced to bi-
partite matching, which can be solved efficiently (Hopcroft
& Karp, 1973). Consider the complete bipartite graph with
left nodes being subjects with Ti = 1 and right nodes being
subjects with Ti = 2 along with n−npair dummy nodes. Put
weight ‖Xi−Xj‖ on edges between datapoints and weight
0 on edges to dummy nodes. The subset of the data with
the closest matches is given by the nodes incident to edges
not incident to dummy nodes in the least-weight bipartite
match. We extract these to construct a well-matched, eco-
nomical test set with ntest = 2npair. Although this test set
may be biased relative to the whole population (e.g., it may
emphasize areas of treatment overlap), the corresponding
risk estimate is unbiased conditioned on the test set, i.e., it
corresponds to risk on an alternative population, which is
often sufficient for comparison and selection.

3.3. Coefficient of Personalization

In prediction, the coefficient of determination R2 is a unit-
less quantity bounded by 1 that measures both how well
data X predict outcomes Y and how well a predictive
model leverages X . One way to interpret out-of-sample
R2 is as the percent of the way that X and the model go
from a no-X-data solution (Y ’s sample average) to perfect
foresight (Y ’s realized value). Using this interpretation, we
construct two analogous quantities for personalization, the
1st and 2nd coefficients of personalization:

P1(τ) = 1− E[Y (τ(X))]−E[mint∈[m] Y (t)]

mint∈[m] E[Y (t)]−E[mint∈[m] Y (t)] ,

P2(τ) = 1− E[Y (τ(X))]−E[mint∈[m] Y (t)]

E[Y (T )]−E[mint∈[m] Y (t)] .

These are also analogous to the coefficient of prescrip-
tion for conditional stochastic optimization (Bertsimas &
Kallus, 2015). The first measures the improvement toward
perfect (prescient) personalization relative to no personal-
ization at all and the second does relative to current practice
or standard of care (whatever determined T in the data).
They are unitless, bounded by 1. Using a matched dataset,
we can estimate these as:4

P̂1(τ) = 1−
Σ

ntest
j=1Ŷijτ(Xij

)−Σ
ntest
j=1 mint∈[m] Ŷijt

mint∈[m] Σ
ntest
j=1Ŷijt

−Σ
ntest
j=1 mint∈[m] Ŷijt

,

P̂2(τ) = 1−
Σ

ntest
j=1Ŷijτ(Xij

)−Σ
ntest
j=1 mint∈[m] Ŷijt

Σ
ntest
j=1Yij

−Σ
ntest
j=1 mint∈[m] Ŷijt

.

3 More efficient estimates may be possible using analogues of
Robins & Rotnitzky (1995); Hahn (1998) on the submatched data.

4 This assumes that potential outcomes are conditionally in-
dependent given X . Indeed, the conditional copula of potential
outcomes has no physical meaning and is unidentifiable.
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Figure 2. Personalization Risk for Personalized Warfarin Dosing

4. Empirical Investigation

We conclude with an empirical investigation of personal-
ization using observational data and our new algorithms.

4.1. Personalized Warfarin Dosing

According to the International Warfarin Pharmacogenetics
Consortium, “warfarin is the most widely used oral antico-
agulant agent worldwide” and finding the appropriate dose
is both difficult and important “because it can vary by a fac-
tor of 10 among patients” and “incorrect doses contribute
to a high rate of adverse effects” (Consortium, 2009). Cur-
rently, the common practice is to start a new patient at
35 mg/week and slowly adjust the dose (Jaffer & Bragg,
2003). We present an application of our methods to per-
sonalizing dosage based on data on 5410 warfarin patients
collected by Consortium (2009).

The baseline data collected on each patient include demo-
graphic characteristics (sex, ethnicity, age, weight, height,
and smoker), reason for treatment (e.g., atrial fibrilla-
tion), current medications, co-morbidities (e.g., diabetes),
genotype of two polymorphisms in CYP2C9, and geno-
type of seven single nucleotide polymorphisms (SNPs) in
VKORC1. The correct stable therapeutic dose of warfarin,
determined by adjustment over a few weeks, is recorded
for each patient and segmented into three dose groups: low
(≤ 21 mg/week, t = 1), medium (> 21, < 49 mg/week,
t = 2), and high (≥ 49 mg/week, t = 3). The dataset
was also studied in an online (bandit) setting in (Bastani &
Bayati, 2016) where an R&C approach is analyzed.

In our experiment, we let Y (t) be 1 if the dose t is incor-
rect and otherwise 0. To generate observational data (where
dosage is not revealed by experimentation), we consider T
chosen based on body mass index (BMI):

P(T = t | X = x) = e(t−2)(xBMI−μBMI)/σBMI

e−(xBMI−μBMI)/σBMI+1+e(xBMI−μBMI)/σBMI
,

where μBMI and σBMI are the sample mean and standard
deviation of BMI. As an example, we run the PT algo-
rithm with Δmax = 5 on the whole data, generating the
tree shown in Fig. 1. (We use Δmax = 5 due to length con-
straints.) It is known that VKORC1 and CYP2C9 geno-
types are strongly associated to warfarin dosage require-
ments (Li et al., 2006). PT is able to learn this relationship
and it provides an efficient and interpretable dosing guide-
line where the effect of these genotypes is clear.

To assess the efficiency of various personalization algo-
rithms, for each n = 100, 200, . . . , 2500, we consider
100 replications in which we randomly select n training
subjects and ntest = 2500 test subjects (disjoint, without
replacement). In each replication, we run 12 personal-
ization algorithms and evaluate their risk on the test set
(where full counterfactuals are available). We test stan-
dard R&C using four predictive models: OLS, logistic
regression, CART (scikit-learn defaults), and kNN
(k = �

√
n�). We compare these to our three direct

personalization methods: PT (nmin-leaf = 20,Δmax =
∞,#features = d), PF (T = 500, nmin-leaf = 10,Δmax =
∞,#features =

√
d), and OPT (nmin-leaf = 20,#features =

d,#cuts = 10,Δ = 2 + I [n ≥ 300], MIP solve time
limited to 1 hour). We also compare to our 1vA strat-
egy using Athey & Imbens (2016)’s CT-A (adaptive) and
CT-H (honest with 50-50 split) and to IPOEM and IN-
POEM (parameters tuned on 25% holdout validation as in
Swaminathan & Joachims, 2015a;b) with GPS imputed by
cross-validated �1-regularized multinomial regression us-
ing R package glmnet. (Due to limited space, we focus
on 1vA, which outperformed 1v1.)

We plot the average risk over replicates in Fig. 2 (note
log scale). It is evident that R&C approaches make inef-
ficient use of the available data by splitting it and learn-
ing more than is necessary. While eventually reaching low
risk (< 0.4), R&C using OLS and logistic regression take



Recursive Partitioning for Personalization using Observational Data

much longer (n = 1300) to get there than our direct meth-
ods, which achieve low risk very quickly (n = 200) and
near-optimal risk (≤ 0.36) soon after (n = 700). Non-
parametric R&C (CART, kNN), IPOEM, and INPOEM
converge slowly. 1vA with CT-A and CT-H offers com-
petitive performance for moderate n, but fails to achieve
near-optimal risk even at n = 2500. CT-A offers a small
edge over CT-H, which can be attributed to CT-H’s splitting
of the training data – indeed, CT-H’s primary advantage are
correctly sized confidence intervals, which are not used.

Among our direct methods, PF appears to work the best
overall, for both small and large n, while PT achieve simi-
lar performance for n ≥ 2000. For smaller n, OPT outper-
forms PT (and PF for n = 100) attributed to OPT’s ability
to find the best simple tree to fit the scarce data. For larger
n, the MIP becomes so large that Gurobi is hardly able to
improve the PT warm start, which has very limited depth.
Therefore, we see performance deteriorate. We conclude
OPT is best either for small datasets or for finding models
that are reasonably efficient while being exceedingly sim-
ple and interpretable (depth 2–3 compared to depth 9–13
for PT at n = 2500), albeit at computational cost. Our best
out-of-sample risk is 0.356, which translates to P̂1 = 0.22,
P̂2 = 0.47: i.e., 22% (or, 47%) of the way from no person-
alization (or, standard of care) to perfect personalization.

4.2. Personalized Job Training

We consider an application to personalized recommenda-
tions for a job training program. We use data from the
National Supported Work Demonstration (LaLonde, 1986)
(combining the experimental sample of 465 subjects with
the 2490 PSID controls to create an observational dataset).
The data includes 2935 individuals, 185 of which received
a job training program in 1976-77 (Ti = 1). The data
includes information about age, education level, ethnicity,
marital status, earnings in years 1974-75, and earnings in
1978. This data is the standard benchmark in evaluation of
causal methodologies for estimating an average treatment
effect (Dehejia & Wahba, 2002). We consider an alterna-
tive setting where we give a personalized recommendation
as to whether to enroll in the job training program, assum-
ing enrollment costs $2,000. Therefore, we let Yi equal
1978 earnings less $2,000 if Ti = 1.

From the 2935, we extract an optimal matched test set of 55
pairs (ntest = 110) perfectly matched in all covariates ex-
cept for a mean absolute deviation of $12 and $17 in 1974
and 1975 earnings, respectively, within pairs. On the re-
maining n = 2825 subjects, we train the same personaliza-
tion models as above with the following changes: we omit
logistic regression (outcomes not binary), use nmin-leaf = 10
for PT and OPT and = 1 for PF, use Δ = 4 for OPT and let
the MIP solve for 24 hours, use logistic regressions to im-

Figure 3. Personalization Benefit for Personalized Job Training

pute GPS for IPOEM and INPOEM, and include the causal
forest (CF) extension (Wager & Athey, 2017) of CT as im-
plemented by the R package gradient.forest.

We plot the estimated average personalized net income (af-
ter enrollment costs) in Fig. 3. We see a clear benefit to our
methods’ direct targeting of personalization and that, with
only two treatments, CF and CT-A provide highly compet-
itive performance. Average net income of 4200.8 due to PF
translates to P̂1 = 0.22, P̂2 = 0.28: i.e., 22% (or, 28%)
of the way from no personalization (or, standard of care) to
perfect personalization.

5. Conclusions

We developed a new approach to the unique problem of
personalization from observational data. The approach was
based on a new formulation of the problem and a new
impurity measure for personalization. This lead to three
recursive-partitioning-based algorithms: the personaliza-
tion tree that greedily partitions the data to minimize the
sum of within-partition personalization impurities, the per-
sonalization forest that bagged many personalization trees,
and the optimal personalization tree that used a MIP to
globally optimize the partitioning problem. We developed
new submatching techniques to evaluate and validate these
algorithms as well as ones adapted from existing methods.
And we used these techniques to evaluate all algorithms
in two example applications: personalized warfarin dos-
ing and personalized job training. In both examples, we
demonstrated the benefits of our algorithms in terms of ef-
ficacy and interpretability. We phrased the success of our
personalization techniques in terms of the new coefficients
of personalization, which quantify the benefit we achieve
from personalization as a percentage of the benefit that im-
possibly perfect personalization can achieve relative to ei-
ther no personalization or the standard of care.
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